Vostochnieleta.ru

Косоватый ресурс

Метки: Боголюбова скачать, гдз по обществу 9 класс учебник боголюбова ответы в классе и дома, боголюбова наталья, боголюбова обществознание 5 класс скачать бесплатно, гдз по обществознанию 8 класс учебник боголюбова 2014.

Теорема Боголюбова — Парасюка утверждает, что перенормированные функции Грина и матричные элементы матрицы рассеяния в квантовой теории поля свободны от ультрафиолетовых расходимостей. Доказана Н. Н. Боголюбовым и О. С. Парасюком в 1955 году[1]. Впоследствии более простое доказательство теоремы было дано также в работе Аникина, Завьялова, Поливанова[2].

Значение в квантовой теории поля

Теорема гарантирует конечность вычисляемых по теории возмущений функций Грина и матричных элементов матрицы рассеяния, устанавливает математическую корректность процедуры вычитания ультрафиолетовых расходимостей, и гарантирует однозначность получаемых результатов в перенормируемых моделях квантовой теории поля.

Полностью решает вопрос о вычитании всех расходимостей в любом произвольно высоком порядке теории возмущений и дает конкретный рецепт такого вычитания в виде R-операции.

Примечания

  1. Н. Н. Боголюбов, О. С. Парасюк (1955). «К теории умножения причинных сингулярных функций». ДАН СССР 100: 25.
  2. Одно простое доказательство теоремы Боголюбова — Парасюка. ТМФ, 1973, том 17, номер 2, стр. 189—198.

Литература

  • Боголюбов Н. Н., Ширков Д. В. Введение в теорию квантованных полей. — М.: Наука, 1984 (глава 5).
  • Shirkov D. V. The Bogoliubov Renormalization Group  (англ.).


Tags: Боголюбова скачать, гдз по обществу 9 класс учебник боголюбова ответы в классе и дома, боголюбова наталья, боголюбова обществознание 5 класс скачать бесплатно, гдз по обществознанию 8 класс учебник боголюбова 2014.